Purpose: Body composition analysis (BCA) of the body torso plays a vital role in the study of physical health and pathology and provides biomarkers that facilitate the diagnosis and treatment of many diseases, such as type 2 diabetes mellitus, cardiovascular disease, obstructive sleep apnea, and osteoarthritis. In this work, we propose a body composition tissue segmentation method that can automatically delineate those key tissues, including subcutaneous adipose tissue, skeleton, skeletal muscle tissue, and visceral adipose tissue, on positron emission tomography/computed tomography scans of the body torso.
Methods: To provide appropriate and precise semantic and spatial information that is strongly related to body composition tissues for the deep neural network, first we introduce a new concept of the body area and integrate it into our proposed segmentation network called Geographical Attention Network (GA-Net). The body areas are defined following anatomical principles such that the whole body torso region is partitioned into three non-overlapping body areas. Each body composition tissue of interest is fully contained in exactly one specific minimal body area. Secondly, the proposed GA-Net has a novel dual-decoder schema that is composed of a tissue decoder and an area decoder. The tissue decoder segments the body composition tissues, while the area decoder segments the body areas as an auxiliary task. The features of body areas and body composition tissues are fused through a soft attention mechanism to gain geographical attention relevant to the body tissues. Thirdly, we propose a body composition tissue annotation approach that takes the body area labels as the region of interest, which significantly improves the reproducibility, precision, and efficiency of delineating body composition tissues.
Results: Our evaluations on 50 low-dose unenhanced CT images indicate that GA-Net outperforms other architectures statistically significantly based on the Dice metric. GA-Net also shows improvements for the 95% Hausdorff Distance metric in most comparisons. Notably, GA-Net exhibits more sensitivity to subtle boundary information and produces more reliable and robust predictions for such structures, which are the most challenging parts to manually mend in practice, with potentially significant time-savings in the post hoc correction of these subtle boundary placement errors. Due to the prior knowledge provided from body areas, GA-Net achieves competitive performance with less training data. Our extension of the dual-decoder schema to TransUNet and 3D U-Net demonstrates that the new schema significantly improves the performance of these classical neural networks as well. Heatmaps obtained from attention gate layers further illustrate the geographical guidance function of body areas for identifying body tissues.
Conclusions: (i) Prior anatomic knowledge supplied in the form of appropriately designed anatomic container objects significantly improves the segmentation of bodily tissues. (ii) Of particular note are the improvements achieved in the delineation of subtle boundary features which otherwise would take much effort for manual correction. (iii) The method can be easily extended to existing networks to improve their accuracy for this application.
Keywords: Body composition analysis; Body tissue segmentation; Deep neural networks; Fully convolutional networks; Prior anatomic knowledge.
Copyright © 2023 Elsevier B.V. All rights reserved.