Consistent representation via contrastive learning for skin lesion diagnosis

Comput Methods Programs Biomed. 2023 Dec:242:107826. doi: 10.1016/j.cmpb.2023.107826. Epub 2023 Sep 29.

Abstract

Background: Skin lesions are a prevalent ailment, with melanoma emerging as a particularly perilous variant. Encouragingly, artificial intelligence displays promising potential in early detection, yet its integration within clinical contexts, particularly involving multi-modal data, presents challenges. While multi-modal approaches enhance diagnostic efficacy, the influence of modal bias is often disregarded.

Methods: In this investigation, a multi-modal feature learning technique termed "Contrast-based Consistent Representation Disentanglement" for dermatological diagnosis is introduced. This approach employs adversarial domain adaptation to disentangle features from distinct modalities, fostering a shared representation. Furthermore, a contrastive learning strategy is devised to incentivize the model to preserve uniformity in common lesion attributes across modalities. Emphasizing the learning of a uniform representation among models, this approach circumvents reliance on supplementary data.

Results: Assessment of the proposed technique on a 7-point criteria evaluation dataset yields an average accuracy of 76.1% for multi-classification tasks, surpassing researched state-of-the-art methods. The approach tackles modal bias, enabling the acquisition of a consistent representation of common lesion appearances across diverse modalities, which transcends modality boundaries. This study underscores the latent potential of multi-modal feature learning in dermatological diagnosis.

Conclusion: In summation, a multi-modal feature learning strategy is posited for dermatological diagnosis. This approach outperforms other state-of-the-art methods, underscoring its capacity to enhance diagnostic precision for skin lesions.

Keywords: Consistent representation; Feature disentangle; Multi-modal; Skin cancer.

MeSH terms

  • Artificial Intelligence
  • Humans
  • Learning
  • Melanoma* / diagnosis
  • Research Design
  • Skin Diseases* / diagnosis