Repositioning VU-0365114 as a novel microtubule-destabilizing agent for treating cancer and overcoming drug resistance

Mol Oncol. 2024 Feb;18(2):386-414. doi: 10.1002/1878-0261.13536. Epub 2023 Oct 22.

Abstract

Microtubule-targeting agents represent one of the most successful classes of anticancer agents. However, the development of drug resistance and the appearance of adverse effects hamper their clinical implementation. Novel microtubule-targeting agents without such limitations are urgently needed. By employing a gene expression-based drug repositioning strategy, this study identifies VU-0365114, originally synthesized as a positive allosteric modulator of human muscarinic acetylcholine receptor M5 (M5 mAChR), as a novel type of tubulin inhibitor by destabilizing microtubules. VU-0365114 exhibits a broad-spectrum in vitro anticancer activity, especially in colorectal cancer cells. A tumor xenograft study in nude mice shows that VU-0365114 slowed the in vivo colorectal tumor growth. The anticancer activity of VU-0365114 is not related to its original target, M5 mAChR. In addition, VU-0365114 does not serve as a substrate of multidrug resistance (MDR) proteins, and thus, it can overcome MDR. Furthermore, a kinome analysis shows that VU-0365114 did not exhibit other significant off-target effects. Taken together, our study suggests that VU-0365114 primarily targets microtubules, offering potential for repurposing in cancer treatment, although more studies are needed before further drug development.

Keywords: colorectal cancer; connectivity map; drug repositioning; drug resistance; microtubule-targeting agent; polypharmacology.

MeSH terms

  • Animals
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Cell Line, Tumor
  • Colorectal Neoplasms* / drug therapy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Drug Repositioning
  • Drug Resistance, Neoplasm
  • Humans
  • Mice
  • Mice, Nude
  • Microtubules / metabolism

Substances

  • Antineoplastic Agents