The development of solid-state sodium-ion batteries (SSSBs) heavily hinges on the development of an superionic Na+ conductor (SSC) that features high conductivity, (electro)chemical stability, and deformability. The construction of heterogeneous structures offers a promising approach to comprehensively enhancing these properties in a way that differs from traditional structural optimization. Here, this work exploits the structural variance between high- and low-coordination halide frameworks to develop a new class of halide heterogeneous structure electrolytes (HSEs). The halide HSEs incorporating a UCl3 -type high-coordination framework and amorphous low-coordination phase achieves the highest Na+ conductivity (2.7 mS cm-1 at room temperature, RT) among halide SSCs so far. By discerning the individual contribution of the crystalline bulk, amorphous region, and interface, this work unravels the synergistic ion conduction within halide HSEs and provides a comprehensive explanation of the amorphization effect. More importantly, the excellent deformability, high-voltage stability, and expandability of HSEs enable effective SSSB integration. Using a cold-pressed cathode electrode composite of uncoated Na0.85 Mn0.5 Ni0.4 Fe0.1 O2 and HSEs, the SSSBs present stable cycle performance with a capacity retention of 91.0% after 100 cycles at 0.2 C.
Keywords: Na+ diffusion; UCl3-type framework; composites; heterogeneous structure; solid-state electrolyte.
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.