We introduce a top-ranked cycle flux ranking scheme of network analysis to assess the performance of molecular junction solar cells. By mapping the Lindblad master equation to the quantum-transition network, we propose a microscopic Hamiltonian description underpinning the rate equations commonly used to characterize molecular photocells. Our approach elucidates the paramount significance of edge flux and unveils two pertinent electron transfer pathways that play equally important roles in robust photocurrent generation. Furthermore, we demonstrate that nonradiative loss processes impede the maximum power efficiency of photocells, which may otherwise be above the Curzon-Ahlborn limit. These findings shed light on the intricate functionalities that govern molecular photovoltaics and offer a comprehensive approach to address them in a systematic way.