Recycling of gold promotes solving the problems of resource waste and environmental pollution. In this work, pentaethylenehexamine (PEHA)-modified chloromethylated polystyrene beads (PEHA-CMPS) was synthesized for the recovery of Au(III) from actual printed circuits boards (PCBs) leaching solution. PEHA-CMPS exhibited excellent adsorption efficiency at a wide pH range. It was discovered that the pseudo-second-order and Langmuir model provided a superior match for the Au(III) adsorption process. The maximum adsorption capacity for Au(III) was 1186 mg/g. Furthermore, PEHA-CMPS was able to selectively capture trace Au(III) with recovery efficiencies of above 80% from the actual PCBs leaching solution. In addition, the column separation approach was utilized to better assess the practical applications for PEHA-CMPS, proving that the prepared adsorbent exhibited great prospects in industrial applications. The adsorption efficiency still maintained 95% after five adsorption-desorption cycles. The FTIR, XRD, and XPS analyses demonstrated that Au(III) uptake on PEHA-CMPS was a collaborative process involving electrostatic interaction, chelation, and oxidation-reduction. The PEHA-CMPS provided a promising strategy in Au(III) recovery and environmental remediation.
Keywords: Adsorption; Au(III); Chloromethylated polystyrene beads; PCBs; Pentaethylenehexamine; Selectivity.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.