Fast ICCD-based temperature modulated fluorescence tomography

Appl Opt. 2023 Oct 1;62(28):7420-7430. doi: 10.1364/AO.499281.

Abstract

Fluorescence tomography (FT) has become a powerful preclinical imaging modality with a great potential for several clinical applications. Although it has superior sensitivity and utilizes low-cost instrumentation, the highly scattering nature of bio-tissue makes FT in thick samples challenging, resulting in poor resolution and low quantitative accuracy. To overcome the limitations of FT, we previously introduced a novel method, termed temperature modulated fluorescence tomography (TMFT), which is based on two key elements: (1) temperature-sensitive fluorescent agents (ThermoDots) and (2) high-intensity focused ultrasound (HIFU). The fluorescence emission of ThermoDots increases up to hundredfold with only several degree temperature elevation. The exceptional and reversible response of these ThermoDots enables their modulation, which effectively allows their localization using the HIFU. Their localization is then used as functional a priori during the FT image reconstruction process to resolve their distribution with higher spatial resolution. The last version of the TMFT system was based on a cooled CCD camera utilizing a step-and-shoot mode, which necessitated long total imaging time only for a small selected region of interest (ROI). In this paper, we present the latest version of our TMFT technology, which uses a much faster continuous HIFU scanning mode based on an intensified CCD (ICCD) camera. This new, to the best of our knowledge, version can capture the whole field-of-view (FOV) of 50×30m m 2 at once and reduces the total imaging time down to 30 min, while preserving the same high resolution (∼1.3m m) and superior quantitative accuracy (<7% error) as the previous versions. Therefore, this new method is an important step toward utilization of TMFT for preclinical imaging.