Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization. Specifically, we design a 7-min, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data-splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments, and in vivo experiments. High-quality knee quantitative maps with 0.8 × 0.8 × 1.5 mm3 resolution and bilateral lower leg maps with 1.6 mm isotropic resolution can be acquired using the proposed 7-min acquisition sequence and the 3-min-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future.
Keywords: MR-STAT; multiparametric MRI; parallel imaging; quantitative MRI; relaxometry.
© 2023 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.