Long-Term Temporospatial Complementary Relationship between Degradation and Bone Regeneration of Mg-Al Alloy

ACS Appl Bio Mater. 2023 Nov 20;6(11):4703-4713. doi: 10.1021/acsabm.3c00488. Epub 2023 Oct 22.

Abstract

The utilization of guided tissue regeneration membranes is a significant approach for enhancing bone tissue growth in areas with bone defects. Biodegradable magnesium alloys are increasingly being used as guided tissue regeneration membranes due to their outstanding osteogenic properties. However, the degradation rates of magnesium alloy bone implants documented in the literature tend to be rapid. Moreover, many studies focus only on the initial 3-month period post-implantation, limiting their applicability and impeding clinical adoption. Furthermore, scant attention has been given to the interplay between the degradation of magnesium alloy implants and the adjacent tissues. To address these gaps, this study employs a well-studied magnesium-aluminum (Mg-Al) alloy membrane with a slow degradation rate. This membrane is implanted into rat skull bone defects and monitored over an extended period of up to 48 weeks. Observations are conducted at various intervals (2, 4, 8, 12, 24, and 48 weeks) following the implantation. Assessment of degradation behavior and tissue regeneration response is carried out using histological sections, micro-CT scans, and scanning electron microscopy (SEM). The findings reveal that the magnesium alloy membranes demonstrate remarkable biocompatibility and osteogenic capability over the entire observation duration. Specifically, the Mg-Al alloy membranes sustain their structural integrity for 8 weeks. Notably, their osteogenic ability is further enhanced as a corrosion product layer forms during the later stages of implantation. Additionally, our in vitro experiments employing extracts from the magnesium alloy display a significant osteogenic effect, accompanied by a notable increase in the expression of osteogenic-related genes. Collectively, these results strongly indicate the substantial potential of Mg-Al alloy membranes in the context of guided tissue regeneration.

Keywords: bone regeneration; degradation rate; in vitro osteogenesis; in vivo degradation; magnesium alloy; osteogenic activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys* / chemistry
  • Alloys* / pharmacology
  • Aluminum / pharmacology
  • Animals
  • Bone Regeneration
  • Magnesium* / chemistry
  • Magnesium* / pharmacology
  • Osteogenesis
  • Rats

Substances

  • Alloys
  • Magnesium
  • Aluminum