Hypoxic bone marrow mesenchymal stem cell-derived exosomal lncRNA XIST attenuates lipopolysaccharide-induced acute lung injury via the miR-455-3p/Claudin-4 axis

Int Immunopharmacol. 2023 Dec;125(Pt A):111066. doi: 10.1016/j.intimp.2023.111066. Epub 2023 Oct 23.

Abstract

Mesenchymal stem cell-derived exosomes and long non-coding RNAs (lncRNAs) have been identified to play a role in acute lung injury (ALI). In this study, we investigated whether exosomal lncRNAs could regulate ALI and the underlying mechanisms. Bone marrow mesenchymal stem cells (BM-MSCs) were pretreated with hypoxia or normoxia, and exosomes were subsequently extracted from normoxic BM-MSCs (Nor-exos) and hypoxic BM-MSCs (Hypo-exos). A rat model of ALI was established via an airway perfusion of lipopolysaccharide (LPS). Exosomes were administered via the tail vein to evaluate the in vivo effect of exosomes in ALI. LPS-exposed RLE-6TN cells were incubated with exosomes to explore their in vitro effect in ALI. A luciferase reporter assay was used to evaluate the interaction between lncRNA XIST and miR-455-3p, as well as miR-455-3p and Claudin-4. We found that the exosomes attenuated LPS-induced ALI and Hypo-Exos exerted a greater therapeutic effect compared with Nor-exos both in vitro and in vivo. Moreover, an abundance of lncRNA XIST was observed in Hypo-exos compared with Nor-exos. Mechanistically, LncRNA XIST functioned as a miR-455-3p sponge and targeted Claudin-4 in ALI. Our results provide novel insight into the role of exosomal lncRNA XIST for the treatment of ALI. Thus, hypoxic pretreatment may represent an effective method for improving the therapeutic effects of exosomes.

Keywords: Acute lung injury; BM-MSCs; Exosomes; Hypoxia; ceRNA; lncRNA XIST.

MeSH terms

  • Acute Lung Injury* / chemically induced
  • Acute Lung Injury* / genetics
  • Acute Lung Injury* / therapy
  • Animals
  • Claudin-4
  • Hypoxia
  • Lipopolysaccharides
  • Mesenchymal Stem Cells*
  • MicroRNAs* / genetics
  • RNA, Long Noncoding* / genetics
  • Rats

Substances

  • Claudin-4
  • Lipopolysaccharides
  • MicroRNAs
  • RNA, Long Noncoding
  • XIST non-coding RNA
  • Cldn4 protein, rat
  • MIRN455 microRNA, rat