A computational investigation of thymidylate synthase inhibitors through a combined approach of 3D-QSAR and pharmacophore modelling

J Biomol Struct Dyn. 2024 Oct;42(16):8473-8492. doi: 10.1080/07391102.2023.2270752. Epub 2023 Oct 23.

Abstract

Thymidylate synthase (TS) is a crucial target of cancer drug discovery and is mainly involved in the De novo synthesis of the DNA precursor thymine. In the present study, to generate reliable models and identify a few promising molecules, we combined QSAR modelling with the pharmacophore hypothesis-generating technique. Input molecules were clustered on their similarity, and a cluster of 74 molecules with a pyrimidine moiety was chosen as the set for 3D-QSAR and pharmacophore modelling. Atom-based and field-based 3D-QSAR models were generated and statistically validated with R2 > 0.90 and Q2 > 0.75. The common pharmacophore hypothesis(CPH) generation identified the best six-point model ADHRRR. Using these best models, a library of FDA-approved drugs was screened for activity and filtered via molecular docking, ADME profiling, and molecular dynamics simulations. The top ten promising TS-inhibiting candidates were identified, and their chemical features profitable for TS inhibitors were explored.Communicated by Ramaswamy H. Sarma.

Keywords: TS inhibitors; Thymidylate synthase; atom-based QSAR; field-based QSAR; pharmacophore hypothesis generation.

MeSH terms

  • Drug Design
  • Enzyme Inhibitors* / chemistry
  • Enzyme Inhibitors* / pharmacology
  • Humans
  • Models, Molecular
  • Molecular Docking Simulation*
  • Molecular Dynamics Simulation*
  • Pharmacophore
  • Protein Binding
  • Quantitative Structure-Activity Relationship*
  • Thymidylate Synthase* / antagonists & inhibitors
  • Thymidylate Synthase* / chemistry
  • Thymidylate Synthase* / metabolism

Substances

  • Thymidylate Synthase
  • Enzyme Inhibitors