The accurate diagnosis of bone metastasis, a condition in which cancer cells have spread to the bone, is essential for optimal patient care and outcome. This review provides a detailed overview of the current medical imaging techniques used to detect and diagnose this critical condition focusing on three cardinal imaging modalities: positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Each of these techniques has unique advantages: PET/CT combines functional imaging with anatomical imaging, allowing precise localization of metabolic abnormalities; the SPECT/CT offers a wider range of radiopharmaceuticals for visualizing specific receptors and metabolic pathways; MRI stands out for its unparalleled ability to produce high-resolution images of bone marrow structures. However, as this paper shows, each modality has its own limitations. The comprehensive analysis does not stop at the technical aspects, but ventures into the wider implications of these techniques in a clinical setting. By understanding the synergies and shortcomings of these modalities, healthcare professionals can make diagnostic and therapeutic decisions. Furthermore, at a time when medical technology is evolving at a breakneck pace, this review casts a speculative eye towards future advances in the field of bone metastasis imaging, bridging the current state with future possibilities. Such insights are essential for both clinicians and researchers navigating the complex landscape of bone metastasis diagnosis.