Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping

ChemSusChem. 2024 Mar 8;17(5):e202301142. doi: 10.1002/cssc.202301142. Epub 2023 Nov 20.

Abstract

Amorphous Al2 O3 film that naturally exists on any Al substrate is a critical bottleneck for the cyclic performance of metallic Al in rechargeable Al batteries. The so-called electron/ion insulator Al oxide slows down the anode's activation and hinders Al plating/stripping. The Al2 O3 film induces different surface properties (roughness and microstructure) on the metal. Al foils present two optically different sides (shiny and non-shiny), but their surface properties and influence on plating and stripping have not been studied so far. Compared to the shiny side, the non-shiny one has a higher (~28 %) surface roughness, and its greater concentration of active sites (for Al plating and stripping) yields higher current densities. Immersion pretreatments in Ionic-Liquid/AlCl3 -based electrolyte with various durations modify the surface properties of each side, forming an electrode-electrolyte interphase layer rich in Al, Cl, and N. The created interphase layer provides more tunneling paths for better Al diffusion upon plating and stripping. After 500 cycles, dendritic Al deposition, generated active sites, and the continuous removal of the Al metal and oxide cause accelerated local corrosion and electrode pulverization. We highlight the mechanical surface properties of cycled Al foil, considering the role of immersion pretreatment and the differences between the two sides.

Keywords: alumina film; aluminum anode; aluminum batteries; surface modification; surface properties.