Juvenile hormone (JH) is an indispensable insect hormone that is critical in regulating insect development and physiology. N6-methyladenosine (m6A) is the most abundant modification of RNA that regulates RNA fate in eukaryotic organisms. However, the relationship between m6A and JH remains largely unknown. Here, we found that the application of a Juvenile hormone analog (JHA) extended the larval period of Bombyx mori and increased the weight and thickness of the cocoon. Interestingly, global transcriptional patterns revealed that m6A-related genes are specifically regulated by JHA in the posterior silk gland (PSG) that synthesizes the major component of cocoon silk. By transcriptome and m6A sequencing data conjointly, we discovered that JHA significantly regulated the m6A modification in the PSG of B. mori and many m6A-containing genes are related to nucleic acid binding, nucleus, and nucleobase-containing compound metabolism. Notably, 547 genes were significantly regulated by JHA at both the m6A modification and expression levels, especially 16 silk-associated genes, including sericin2, seroin1, Serine protease inhibitors 4 (BmSPI4), Serine protease inhibitors 5 (BmSPI5), and LIM domain-binding protein 2 (Ldb). Among them, 11 silk associated genes were significantly affected by METTL3 knockdown, validating that these genes are targets of m6A modification. Furthermore, we confirm that JHA directly regulates the expression of BmSPI4 and BmSPI5 through m6A modification of CDS regions. These results demonstrate the essential role of m6A methylation regulated by JH in PSG, and elucidate a novel mechanism by which JH affects silk gland development via m6A methylation. This study uncovers that m6A modification is a critical factor mediating the effect of JH in insects.
Keywords: Bombyx mori; Insect; Juvenile hormone; Silk gland; m6A.
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.