RNAs can fold into compact three-dimensional structures, and most RNAs undergo protein interactions in the cell. These compact and occluded environments can block the ability of structure-probing agents to provide useful data about the folding and modification of the underlying RNA. The development of probes that can analyze structure in crowded settings, and differentiate the proximity of interactions, can shed new light on RNA biology. To this end, here we employ 2'-OH-reactive probes that are small enough to access folded RNA structure underlying many close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. We compare reverse transcriptase stops in RNA-Seq data from probes of small and standard size to assess RNA-protein proximity and evaluate solvent-exposed tunnels adjacent to RNA. The data are analyzed first with structurally characterized complexes (human 18S and 28S RNA), and then applied transcriptome-wide to polyadenylated transcripts in HEK293 cells. In our transcriptome profile, the smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. We further show that acetyl probes provide superior signals for identifying m6A modification sites in transcripts, and provide information regarding methylation sites that are inaccessible to a larger standard probe. RNA infrastructure profiling (RISP) enables enhanced analysis of transcriptome structure, modification, and interactions in living cells, especially in spatially crowded settings.