Reversible Microwheel Translation Induced by Polymer Depletion

Langmuir. 2023 Nov 7;39(44):15547-15552. doi: 10.1021/acs.langmuir.3c01815. Epub 2023 Oct 25.

Abstract

For in vivo applications, microbots (μbots) must move, which is a need that has led to designs, such as helical swimmers, that translate through the bulk fluid. We have previously demonstrated that, upon application of a rotating magnetic field, colloidal particles in aqueous systems can be reversibly assembled from superparamagnetic particles into μbots that translate along surfaces using wet friction. Here, we show that high-molecular-weight polymers of a size that approaches the length scale of the gap between the μbot and surface can be excluded, impacting μbot transport. Using xanthan gum as a convenient high-molecular-weight model, we determine that polymer depletion imparts only a weak effect on colloid-surface interactions but has a significant influence on local viscosity, which is an effect great enough to induce a reversal in the μbot translation direction.