Identification of Differences in Body Composition Measures Using 3D-Derived Artificial Intelligence from Multiple CT Scans across the L3 Vertebra Compared to a Single Mid-Point L3 CT Scan

Radiol Res Pract. 2023 Oct 17:2023:1047314. doi: 10.1155/2023/1047314. eCollection 2023.

Abstract

Purpose: Body composition analysis in colorectal cancer (CRC) typically utilises a single 2D-abdominal axial CT slice taken at the mid-L3 level. The use of artificial intelligence (AI) allows for analysis of the entire L3 vertebra (non-mid-L3 and mid-L3). The goal of this study was to determine if the use of an AI approach offered any additional information on capturing body composition measures.

Methods: A total of 2203 axial CT slices of the entire L3 level (4-46 slices were available per patient) were retrospectively collected from 203 CRC patients treated at Western Health, Melbourne (97 males; 47.8%). A pretrained artificial intelligence (AI) model was used to segment muscle, visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT) on these slices. The difference in body composition measures between mid-L3 and non-mid-L3 scans was compared for each patient, and for males and females separately.

Results: Body composition measures derived from non-mid-L3 scans exhibited a median range of 0.85% to 6.28% (average percent difference) when compared to the use of a single mid-L3 scan. Significant variation in the VAT surface area (p = 0.02) was observed in females compared to males, whereas male patients exhibited a greater variation in SAT surface area (p < 0.001) and radiodensity (p = 0.007).

Conclusion: Significant differences in various body composition measures were observed when comparing non-mid-L3 slices to only the mid-L3 slice. Researchers should be aware that considering only the use of a single midpoint L3 CT scan slice will impact the estimate of body composition measurements.