Heterostructured Bimetallic MOF-on-MOF Architectures for Efficient Oxygen Evolution Reaction

Adv Mater. 2024 Feb;36(8):e2306910. doi: 10.1002/adma.202306910. Epub 2023 Dec 12.

Abstract

Electron modulation presents a captivating approach to fabricate efficient electrocatalysts for the oxygen evolution reaction (OER), yet it remains a challenging undertaking. In this study, an effective strategy is proposed to regulate the electronic structure of metal-organic frameworks (MOFs) by the construction of MOF-on-MOF heterogeneous architectures. As a representative heterogeneous architectures, MOF-74 on MOF-274 hybrids are in situ prepared on 3D metal substrates (NiFe alloy foam (NFF)) via a two-step self-assembly method, resulting in MOF-(74 + 274)@NFF. Through a combination of spectroscopic and theory calculation, the successful modulation of the electronic property of MOF-(74 + 274)@NFF is unveiled. This modulation arises from the phase conjugation of the two MOFs and the synergistic effect of the multimetallic centers (Ni and Fe). Consequently, MOF-(74 + 274)@NFF exhibits excellent OER activity, displaying ultralow overpotentials of 198 and 223 mV at a current density of 10 mA cm-2 in the 1.0 and 0.1 M KOH solutions, respectively. This work paves the way for manipulating the electronic structure of electrocatalysts to enhance their catalytic activity.

Keywords: MOF-on-MOF; charge transfer; metal-organic frameworks; oxygen evolution reaction; synergistic effect.