American Aberdeen (AD) cattle in the USA descend from an Aberdeen Angus herd originally brought to the Trangie Agricultural Research Centre, New South Wales, AUS. Although put under specific selection pressure for yearling growth rate, AD remain genomically uncharacterized. The objective was to characterize the genetic diversity and structure of purebred and crossbred AD cattle relative to seven common USA beef breeds using available whole-genome SNP data. A total of 1140 animals consisting of 404 purebred (n = 8 types) and 736 admixed individuals (n = 10 types) was used. Genetic diversity metrics, an analysis of molecular variance, and a discriminant analysis of principal components were employed. When linkage disequilibrium was not accounted for, markers influenced basic diversity parameter estimates, especially for AD cattle. Even so, intrapopulation and interpopulation estimates separate AD cattle from other purebred types (e.g., Latter's pairwise FST ranged from 0.1129 to 0.2209), where AD cattle were less heterozygous and had lower allelic richness than other purebred types. The admixed AD-influenced cattle were intermediate to other admixed types for similar parameters. The diversity metrics separation and differences support strong artificial selection pressures during and after AD breed development, shaping the evolution of the breed and making them genomically distinct from similar breeds.
Keywords: genetic diversity; lowline cattle; population structure.