Chromatin accessibility profiles at single cell resolution can reveal cell type-specific regulatory programs, help dissect highly specialized cell functions and trace cell origin and evolution. Accurate cell type assignment is critical for effectively gaining biological and pathological insights, but is difficult in scATAC-seq. Hence, by extensively reviewing the literature, we designed scATAC-Ref (https://bio.liclab.net/scATAC-Ref/), a manually curated scATAC-seq database aimed at providing a comprehensive, high-quality source of chromatin accessibility profiles with known cell labels across broad cell types. Currently, scATAC-Ref comprises 1 694 372 cells with known cell labels, across various biological conditions, >400 cell/tissue types and five species. We used uniform system environment and software parameters to perform comprehensive downstream analysis on these chromatin accessibility profiles with known labels, including gene activity score, TF enrichment score, differential chromatin accessibility regions, pathway/GO term enrichment analysis and co-accessibility interactions. The scATAC-Ref also provided a user-friendly interface to query, browse and visualize cell types of interest, thereby providing a valuable resource for exploring epigenetic regulation in different tissues and cell types.
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.