Solution phase high repetition rate laser pump x-ray probe picosecond hard x-ray spectroscopy at the Stanford Synchrotron Radiation Lightsource

Struct Dyn. 2023 Oct 27;10(5):054304. doi: 10.1063/4.0000207. eCollection 2023 Sep.

Abstract

We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kβ main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.