Real-Time Imaging of Acrosomal Calcium Dynamics and Exocytosis in Live Mouse Sperm

J Vis Exp. 2023 Oct 13:(200). doi: 10.3791/65962.

Abstract

Acrosome exocytosis (AE), in which the sperm's single exocytotic vesicle fuses with the plasma membrane, is a complex, calcium-dependent process essential for fertilization. However, our understanding of how calcium signaling regulates AE is still incomplete. In particular, the interplay between intra-acrosomal calcium dynamics and the intermediate steps leading to AE is not well-defined. Here, we describe a method that provides spatial and temporal insights into acrosomal calcium dynamics and their relationship to membrane fusion and subsequent exocytosis of the acrosome vesicle. The method utilizes a novel transgenic mouse expressing an Acrosome-targeted Sensor for Exocytosis (AcroSensE). The sensor combines a genetically encoded calcium indicator (GCaMP) fused with mCherry. This fusion protein was specifically designed to enable the concurrent observation of acrosomal calcium dynamics and membrane fusion events. Real-time monitoring of acrosomal calcium dynamics and AE in live AcroSensE sperm is achieved using a combination of high frame-rate imaging and a stimulant delivery system that can target single sperm. This protocol also provides several examples of basic methods to quantify and analyze the raw data. Because the AcroSensE model is genetically encoded, its scientific significance can be augmented by using readily available genetic tools, such as crossbreeding with other mouse genetic models or gene-editing (CRISPR) based methods. With this strategy, the roles of additional signaling pathways in sperm capacitation and fertilization can be resolved. In summary, the method described here provides a convenient and effective tool to study calcium dynamics in a specific subcellular compartment-the sperm acrosome-and how those dynamics regulate the intermediate steps leading to membrane fusion and acrosome exocytosis.

Publication types

  • Video-Audio Media
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Calcium Signaling
  • Calcium* / metabolism
  • Exocytosis / physiology
  • Male
  • Mice
  • Mice, Transgenic
  • Semen* / metabolism
  • Spermatozoa

Substances

  • Calcium