Breaking the barriers of data scarcity in drug-target affinity prediction

Brief Bioinform. 2023 Sep 22;24(6):bbad386. doi: 10.1093/bib/bbad386.

Abstract

Accurate prediction of drug-target affinity (DTA) is of vital importance in early-stage drug discovery, facilitating the identification of drugs that can effectively interact with specific targets and regulate their activities. While wet experiments remain the most reliable method, they are time-consuming and resource-intensive, resulting in limited data availability that poses challenges for deep learning approaches. Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue. To overcome this challenge, we present the Semi-Supervised Multi-task training (SSM) framework for DTA prediction, which incorporates three simple yet highly effective strategies: (1) A multi-task training approach that combines DTA prediction with masked language modeling using paired drug-target data. (2) A semi-supervised training method that leverages large-scale unpaired molecules and proteins to enhance drug and target representations. This approach differs from previous methods that only employed molecules or proteins in pre-training. (3) The integration of a lightweight cross-attention module to improve the interaction between drugs and targets, further enhancing prediction accuracy. Through extensive experiments on benchmark datasets such as BindingDB, DAVIS and KIBA, we demonstrate the superior performance of our framework. Additionally, we conduct case studies on specific drug-target binding activities, virtual screening experiments, drug feature visualizations and real-world applications, all of which showcase the significant potential of our work. In conclusion, our proposed SSM-DTA framework addresses the data limitation challenge in DTA prediction and yields promising results, paving the way for more efficient and accurate drug discovery processes.

Keywords: Data Scarcity; Drug–Target Affinity Prediction; Masked Language Modeling; Multi-task Learning; Semi-supervised Learning.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drug Delivery Systems
  • Drug Discovery*