Molecular tuning of sea anemone stinging

Elife. 2023 Oct 31:12:RP88900. doi: 10.7554/eLife.88900.

Abstract

Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here, we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVβ subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.

Keywords: Nematostella vectensis; cassiopea xamachana; clytia hemisphaerica; cyanea capillata; exaiptasia diaphana; molecular biophysics; neuroscience; physalia physalis; structural biology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution
  • Sea Anemones* / genetics
  • Venoms

Substances

  • Venoms