Photogrammetry refers to the process of creating 3D models and taking measurements through the use of photographs. Photogrammetry has many applications in neurosurgery, such as creating 3D anatomical models and diagnosing and evaluating head shape and posture deformities. This review aims to summarize the uses of the technique in the neurosurgical practice and showcase the systems and software required for its implementation. A literature review was done in the online database PubMed. Papers were searched using the keywords "photogrammetry", "neurosurgery", "neuroanatomy", "craniosynostosis" and "scoliosis". The identified articles were later put through primary (abstracts and titles) and secondary (full text) screening for eligibility for inclusion. In total, 86 articles were included in the review from 315 papers identified. The review showed that the main uses of photogrammetry in the field of neurosurgery are related to the creation of 3D models of complex neuroanatomical structures and surgical approaches, accompanied by the uses for diagnosis and evaluation of patients with structural deformities of the head and trunk, such as craniosynostosis and scoliosis. Additionally, three instances of photogrammetry applied for more specific aims, namely, cervical spine surgery, skull-base surgery, and radiosurgery, were identified. Information was extracted on the software and systems used to execute the method. With the development of the photogrammetric method, it has become possible to create accurate 3D models of physical objects and analyze images with dedicated software. In the neurosurgical setting, this has translated into the creation of anatomical teaching models and surgical 3D models as well as the evaluation of head and spine deformities. Through those applications, the method has the potential to facilitate the education of residents and medical students and the diagnosis of patient pathologies.
Keywords: craniosynostosis; neurosurgery; neurosurgical approaches; photogrammetry; scoliosis; three-dimensional models.
Copyright © 2023, Trandzhiev et al.