Pareto Front Learning (PFL) was recently introduced as an efficient method for approximating the entire Pareto front, the set of all optimal solutions to a Multi-Objective Optimization (MOO) problem. In the previous work, the mapping between a preference vector and a Pareto optimal solution is still ambiguous, rendering its results. This study demonstrates the convergence and completion aspects of solving MOO with pseudoconvex scalarization functions and combines them into Hypernetwork in order to offer a comprehensive framework for PFL, called Controllable Pareto Front Learning. Extensive experiments demonstrate that our approach is highly accurate and significantly less computationally expensive than prior methods in term of inference time.
Keywords: Hypernetwork; Multi-objective optimization; Multi-task learning; Pareto front learning; Scalarization problem.
Copyright © 2023 Elsevier Ltd. All rights reserved.