Glutathione (GSH) is a crucial non-protein thiol and an indispensable endogenous antioxidant. The aberrant expression of GSH in plasma and cytosol is closely related to numerous diseases, including cancer. Therefore, establishing a sensitive method for analyzing GSH has important application value for biomedical research and clinical medical detection. Herein, A method for the rapid and simple detection of GSH was proposed, which is based on an anti-etching mechanism by utilizing gold nanotetrapods (Au NTPs) and manganese dioxide nanosheets (MnO2 NSs). In the absence of GSH, Au NTPs solution can cause a distinct color change from gray-green to red through the etching effect of MnO2 NSs. However, in the presence of GSH, the redox reaction between GSH and MnO2 NSs inhibits the etching of Au NTPs by MnO2 NSs, and Au NTPs solution maintains persistent gray-green color. The colorimetric probe exhibited excellent selectivity for GSH. The limits of detection for GSH were 43.5 nM (UV-vis spectrum) and 0.25 μM (naked eyes). The sensing technique exhibited excellent linearity between wavelength shift and GSH concentration within the range of 0.25 μM-1.5 μM. The outcomes of GSH detection in actual biological samples demonstrate that this probe has the potential to be applied to GSH detection in intricate biological samples.
Keywords: Anti-etching mechanism; GSH colorimetric detection; Gold nanotetrapods; Manganese dioxide nanosheets; Multicolor response.
Copyright © 2023 Elsevier B.V. All rights reserved.