On the accuracy of cross-section measurements of neutron-induced reactions using the activation technique with natural targets: The case of Ge at En=17.9 MeV

Appl Radiat Isot. 2024 Jan:203:111077. doi: 10.1016/j.apradiso.2023.111077. Epub 2023 Nov 3.

Abstract

Several cross-section measurements of neutron-induced reactions on Ge found in literature, are performed utilizing natGe targets. The production of the same residual nucleus as the measured one might occur as a result of the unavoidable presence of neighboring isotopes in the same target, acting as a contamination. Corrections must be made based on theoretical calculations and models in order to resolve this problem. The accuracy and limits of a methodology for these "theoretical corrections" are investigated in this work using isotopically enriched targets, which can produce very accurate results without the need for such corrections. Experimental cross-section measurements have been made for the 76Ge(n,2n)75Ge, 72Ge(n,α)69mZn and 72Ge(n,p)72Ga reactions, via the activation technique, with the 27Al(n,α)24Na reaction used as reference, employing both a natGe and isotopically enriched Ge targets. The 3H(d,n)4He (D-T) reaction was used for producing the quasi-monoenergetic neutron beam in the 5.5 MV Tandem Accelerator Laboratory of the National Centre for Scientific Research "Demokritos" in Athens, Greece, at an incident deuteron beam energy of 2.9 MeV. Using HPGe detectors, γ-ray spectroscopy was applied to determine the induced γ-ray activity of the residual nuclei.

Keywords: Activation method; Cross-section measurements; Enriched targets; Ge; Neutrons; Theoretical corrections.