Hydrophobic ionic liquids (ILs), broadly utilized as electrolytes, face limitations in practical applications due to their hygroscopicity, which narrows their electrochemical windows via water electrolysis. Herein, we scrutinized the impact of incorporating cheap salts on the electrochemical stability of wet hydrophobic ILs. We observed that alkali ions effectively manipulate the solvation structure of water and regulate the electrical double layer (EDL) structure by subtly adjusting the free energy distribution of water in wet ILs. Specifically, alkali ions significantly disrupted the hydrogen bond network, reducing free water, strengthening the O-H bond, and lowering water activity in bulk electrolytes. This effect was particularly pronounced in EDL regions, where most water molecules were repelled from both the cathode and anode with the disappearance of the H-bond network connectivity along the EDL. The residual interfacial water underwent reorientation, inhibiting water electrolysis and thus enhancing the electrochemical window of wet hydrophobic ILs. This theoretical proposition was confirmed by cyclic voltammetry measurements, demonstrating a 45% enhancement in the electrochemical windows for salt-in-wet ILs, approximating the dry one. This work offers feasible strategies for tuning the EDL and managing interfacial water activity, expanding the comprehension of interface engineering for advanced electrochemical systems.