Recombinant-methioninase-producing Escherichia coli Instilled in the Microbiome Inhibits Triple-negative Breast Cancer in an Orthotopic Cell-line Mouse Model

Cancer Diagn Progn. 2023 Nov 3;3(6):649-654. doi: 10.21873/cdp.10267. eCollection 2023 Nov-Dec.

Abstract

Background/aim: Methionine restriction by diet and recombinant methioninase (rMETase) are effective for cancer therapy by themselves or combined with chemotherapy drugs. We previously showed that oral administration of rMETase-producing Escherichia coli JM109 (E. coli JM109-rMETase) can be installed in the mouse microbiome and inhibit colon-cancer growth in a syngeneic mouse model. In the present report, we investigated the efficacy of oral administration of E. coli JM109-rMETase in an orthotopic triple-negative breast cancer (TNBC) cell-line mouse model.

Materials and methods: First, we established orthotopic 4T1 mouse triple-negative breast cancer on an abdominal mammary gland in female athymic nu/nu nude mice aged 4-6 weeks. After tumor growth, 15 mice were divided into three groups of 5. Group 1 was administered phosphate-buffered saline (PBS) orally by gavage twice daily as a control; Group 2 was administered non-recombinant E. coli JM109 competent cells orally by gavage twice daily as a control; Group 3 was administered E. coli JM109-rMETase cells by gavage twice daily for two weeks. Tumor size was measured with calipers twice per week. On day 15, blood methionine level was examined using an HPLC method.

Results: Oral administration of E. coli JM109-rMETase inhibited 4T1 TNBC growth significantly compared to the PBS and E. coli JM109 control groups. On day 15, the blood methionine level was significantly lower in the mice administered E. coli JM109-rMETase than in the PBS control.

Conclusion: E. coli JM109-rMETase lowered blood methionine levels and inhibited TNBC growth in an orthotopic cell-line mouse model, suggesting future clinical potential against a highly recalcitrant cancer.

Keywords: 4T1 cellline; Escherichia coli; Hoffman effect; Methionine addiction; methionine depletion; mouse model; orthotopic; recombinant methioninase; triple negative breast cancer; tumor-growth inhibition.