Hollow mesoporous carbon supported Co-modified Cu/Cu2O electrocatalyst for nitrate reduction reaction

J Colloid Interface Sci. 2024 Feb:655:208-216. doi: 10.1016/j.jcis.2023.10.125. Epub 2023 Oct 26.

Abstract

The electroreduction of nitrate (NO3-) pollutants to ammonia (NH3) provides a sustainable approach for both wastewater treatment and NH3 synthesis. However, electroreduction of nitrate requires multi-step electron and proton transfer, resulting in a sluggish reaction rate. Herein, we synthesized a Co-modified Cu/Cu2O catalyst supported on hollow mesoporous carbon substrates (Co/Cu/Cu2O-MesoC) by a one-step microwave-assisted reduction method. At -0.25 V vs. reversible hydrogen electrode (RHE), Co/Cu/Cu2O-MesoC shows a Faradaic efficiency (FE) of 100 ± 1% in 0.1 M NO3-. Notably, the maximum NH3 yield rate (YieldNH3) reaches 6.416 ± 0.78 mmol mgcat-1h-1 at -0.45 V vs. RHE, which is much better than most of the previous reports. Electrochemical evaluation and in-situ Fourier transform infrared (FTIR) spectroscopy reveal that the addition of Co could promote water electrolysis, and the generated H* is involved in the following hydrogenation of intermediates, ultimately leading to faster kinetics and energetics during electrocatalytic conversion of NO3- to NH3. This synergetic electrocatalysis strategy opens a new avenue for the development of high-activity, selectivity, and stability catalysts.

Keywords: Co-modified Cu/Cu(2)O; Electrocatalytic NO(3)(−) to NH(3); Electron transfer; Hollow mesoporous carbon; Microwave-assisted reduction.