Cartilage microbial DNA patterns have been recently characterized in osteoarthritis (OA). The objectives of this study were to evaluate the gut origins of cartilage microbial DNA, to characterize cartilage microbial changes with age, obesity, and OA in mice, and correlate these to gut microbiome changes. We used 16S rRNA sequencing performed longitudinally on articular knee cartilage from germ-free (GF) mice following oral microbiome inoculation and cartilage and cecal samples from young and old wild-type mice with/without high-fat diet-induced obesity (HFD) and with/without OA induced by destabilization of the medial meniscus (DMM) to evaluate gut and cartilage microbiota. Microbial diversity was assessed, groups compared, and functional metagenomic profiles reconstructed. Findings were confirmed in an independent cohort by clade-specific qPCR. We found that cartilage microbial patterns developed at 48 h and later timepoints following oral microbiome inoculation of GF mice. Alpha diversity was increased in SPF mouse cartilage samples with age (P = 0.013), HFD (P = 5.6E-4), and OA (P = 0.029) but decreased in cecal samples with age (P = 0.014) and HFD (P = 1.5E-9). Numerous clades were altered with aging, HFD, and OA, including increases in Verrucomicrobia in both cartilage and cecal samples. Functional analysis suggested changes in dihydroorotase, glutamate-5-semialdehyde dehydrogenase, glutamate-5-kinase, and phosphoribosylamine-glycine ligase, in both cecum and cartilage, with aging, HFD, and OA. In conclusion, cartilage microbial DNA patterns develop rapidly after the introduction of a gut microbiome and change in concert with the gut microbiome during aging, HFD, and OA in mice. DMM-induced OA causes shifts in both cartilage and cecal microbiome patterns independent of other factors.
Keywords: Aging; High-fat diet; Microbiome; Mouse models; Osteoarthritis.
© 2023. The Author(s).