The milling profiles of single-crystal gallium nitride (GaN) when subjected to focused ion beams (FIBs) using gallium (Ga), xenon (Xe), and helium (He) ion sources were investigated. An experimental analysis via annular dark-field scanning transmission electron microscopy (ADF-STEM) and high-resolution transmission electron microscopy (HRTEM) revealed that Ga-FIB milling yields trenches with higher aspect ratios compared to Xe-FIB milling for the selected ion beam parameters (30 kV, 42 pA), while He-FIB induces local lattice disorder. Molecular dynamics (MD) simulations were employed to investigate the milling process, confirming that probe size critically influences trench aspect ratios. Interestingly, the MD simulations also showed that Xe-FIB generates higher aspect ratios than Ga-FIB with the same probe size, indicating that Xe-FIB could also be an effective option for nanoscale patterning. Atomic defects such as vacancies and interstitials in GaN from He-FIB milling were suggested by the MD simulations, supporting the lattice disorder observed via HRTEM. This combined experimental and simulation approach has enhanced our understanding of FIB milling dynamics and will benefit the fabrication of nanostructures via the FIB technique.
Keywords: focused ion beam; gallium nitride; milling profiles; molecular dynamics; transmission electron microscopy.