Background: One of the 11 recognized mucopolysaccharidosis (MPS) diseases is Sanfilippo. It is autosomal recessive in its mode of transmission. There are four subtypes of Sanfilippo (A, B, C, and D). The most worldwide prevalent subtypes of mucopolysaccharidosis type III (MPS III) are A and B followed by C and D subtypes. To estimate the frequency of MPS IIIA among MPS III patients, we diagnose and compare their clinical features with those of MPS IIIB and also compare the prevalence of MPS IIIB versus MPS IIIA among diagnosed cases at the Biochemical Genetic Department at NRC. For every case that was referred, the quantitative determination of urine Glycosaminoglycans (GAGs) was assessed. Two-dimensional electrophoresis (2DE) of GAGs extracted from urine was performed on all cases with high urinary GAG levels. Both N-sulphoglucosamine sulphohydrolase (MPS IIIA) and N-alpha-acetylglucosaminidase (MPS IIIB) enzyme activity were determined fluorometrically.
Results: From November 2019 to May 2022, 535 cases were referred to the National Research Centre's Biochemical Genetics Department. 233 (43%) MPS cases were diagnosed with high urinary GAG levels for their ages. 73 (31.3%) MPS III cases were diagnosed by 2DE out of the 233 MPS cases. Plasma N-alpha-acetylglucosaminidase enzyme assay was insufficient in 36 (49.3%) patients (Sanfilippo type B), while N-sulphoglucosamine sulphohydrolase enzyme activity was deficient in 15 (20.6%) patients. The other 22 (30.1%) patients are either Sanfilippo type C or D.
Conclusion: N-sulphoglucosamine sulphohydrolase enzyme activity was measured for the first time in Egypt. Thirty-one percent of all diagnosed MPS cases during the last 3 years were MPS type III, making Sanfilippo the most common MPS type among the referred cases to our Biochemical Genetics Department. MPS IIIA accounts for 20.6% of MPSIII cases in this study. Still, MPS type IIIB is the commonest type among diagnosed patients.
Keywords: Mucopolysaccharidosis; N-alpha-acetylglucosaminidase enzymes; N-sulphoglucosamine sulphohydrolase; Sanfilippo disorder.
© 2023. The Author(s).