Advances in statistics mean that it is now possible to tackle increasingly sophisticated observation processes. The intricacies and ambitious scale of modern data collection techniques mean that this is now essential. Methodological research to make inference about the biological process while accounting for the observation process has expanded dramatically, but solutions are often presented in field-specific terms, limiting our ability to identify commonalities between methods. We suggest a typology of observation processes that could improve translation between fields and aid methodological synthesis. We propose the LIES framework (defining observation processes in terms of issues of Latency, Identifiability, Effort and Scale) and illustrate its use with both simple examples and more complex case studies.
Keywords: effort; identifiability; latency; non-transferability; scale.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.