Hydrothermal liquefaction wastewater from sewage sludge (sludge HTLWW) is an emerging waste stream that requires treatment before being discharged into the environment. Biological treatment of sludge HTLWW is an attractive option due to the low cost and operational flexibility. In this study, we investigated and compared the performance of three bacterial strains and four fungal strains for biodegradation of sludge HTLWW. Our screening experiments established pH and mineral supplementation (iron, magnesium, calcium, and phosphorus) conditions that greatly improved COD removal and chemical compound degradation by the microbes. An ammonia stripping pretreatment improved COD removal efficiency of Rhodococci jostii RHA1 by 44%. All tested bacterial strains can tolerate 10× dilution of HTLWW and remove 35-44% of COD in 2-15 days, while all tested fungal strains were able to tolerate 20× dilution and were better at degrading phenolic compounds than bacteria. HTLWW treatment with biomass pellets of fungus Aspergillus niger NRRL 2001 achieved the best COD removal efficiency of 47% in 12 days without the need of nutrient supplementation. Comparisons on chemical compound degradation by the tested microbes suggested that organic acids in HTLWW were highly degradable, followed by phenolic compounds. N-heterocyclic compounds were resistant to biodegradation and were removed by 38%. This study demonstrated pure culture biological treatment of sludge HTLWW with diverse types of microorganisms, which would guide the culture development and bioprocess parameter optimization for treating HTLWW of different compositions.
Keywords: Bio-oil; Biodegradation; Hydrothermal liquefaction; Recalcitrant compound; Sewage sludge; Sustainability.
Copyright © 2023 Elsevier Ltd. All rights reserved.