Background and aims: Numerous strategies for enhancing seed germination and growth have been employed over the decades. Despite these advancements, there continues to be a demand for more effective techniques, driven by the growing global population. Recently, various forms of non-thermal atmospheric pressure plasma have garnered attention as environmentally friendly, safe, and cost-effective methods to enhance the agricultural and food sectors. This study explores the remarkable impact of non-thermal plasma (NTP) treatment on cucumber (Cucumis sativus L.) seed germination.
Methods: A cost-effective, custom-designed power supply operating at line frequency was used for treating seeds, with exposure times ranging from 1 to 7 min. Various germination parameters, including water contact angle measurements, mass loss, water imbibition rate, and seedling length, were evaluated to assess the impact of plasma treatment on seed germination.
Results: Cucumber seeds exposed to NTP treatment for 3 min and 5 min durations showed significant germination improvements, notably a 57.9 ± 4.25 % higher final germination percentage, 14.5 ± 3.75 % reduced mean germination time, and a remarkable 90.6 ± 4.64 % increase in germination index compared to the control. These results suggest that NTP treatment enhanced seed coat permeability, triggered essential biochemical processes, and expedited water absorption and nutrient assimilation, ultimately fostering faster and more synchronized germination.
Conclusions: Our findings underscore the potential of NTP as an innovative approach to improving seed germination in agricultural practices.
Keywords: Cucumber seeds; Dielectric barrier discharge; Germination performance; Non-thermal plasma (NTP); Reactive species.
© 2023 The Author(s).