To produce food-grade ice nucleators, a 3.77 kb ice nucleation gene (iceE) isolated from Pantoea agglomerans (Erwinia herbicola) was introduced into the Gram-positive microorganism Bacillus amyloliquefaciens for the first time. The differential scanning calorimetry (DSC) results indicated that recombined strain B9-INP was an effective ice nucleator for controlling the supercooling point of distilled water at low concentrations. In the presence of B9-INP cells, model food systems, including sucrose solution and sodium chloride solution, different pH solutions froze at a relatively high subzero temperature, thus increasing the supercooling point by 5.8~16.7 °C. Moreover, B9-INP also facilitated model and real food systems to freeze at -6 °C. This recombinant strain not only improved the freezing temperature of food systems but also shortened the total freezing time, thus saving energy and reducing consumption. The results suggest that B9-INP has great application potential in the frozen food industry.
Keywords: Bacillus amyloliquefaciens; frozen food; ice nucleation activity; ice nucleation proteins (INPs); recombinant protein expressing.