Mixed phenotype (MP) in acute leukemias poses unique classification and management dilemmas and can be seen in entities other than de novo mixed phenotype acute leukemia (MPAL). Although WHO classification empirically recommends excluding AML with myelodysplasia related changes (AML-MRC) and therapy related AML (t-AML) with mixed phenotype (AML-MP) from MPAL, there is lack of studies investigating the clinical, genetic, and biologic features of AML-MP. We report the first cohort of AML-MRC and t-AML with MP integrating their clinical, immunophenotypic, genomic and transcriptomic features with comparison to MPAL and AML-MRC/t-AML without MP. Both AML cohorts with and without MP shared similar clinical features including adverse outcomes but were different from MPAL. The genomic landscape of AML-MP overlaps with AML without MP but differs from MPAL. AML-MP harbors more frequent RUNX1 mutations than AML without MP and MPAL. RUNX1 mutations did not impact the survival of patients with MPAL. Unsupervised hierarchal clustering based on immunophenotype identified biologically distinct clusters with phenotype/genotype correlation and outcome differences. Furthermore, transcriptomic analysis showed an enrichment for stemness signature in AML-MP and AML without MP as compared to MPAL. Lastly, MPAL but not AML-MP often switched to lymphoid only immunophenotype after treatment. Expression of transcription factors critical for lymphoid differentiation were upregulated only in MPAL, but not in AML-MP. Our study for the first time demonstrates that AML-MP clinically and biologically resembles its AML counterpart without MP and differs from MPAL, supporting the recommendation to exclude these patients from the diagnosis of MPAL. Future studies are needed to elucidate the molecular mechanism of mixed phenotype in AML.
Key points: AML-MP clinically and biologically resembles AML but differs from MPAL. AML-MP shows RUNX1 mutations, stemness signatures and limited lymphoid lineage plasticity.