Progression through the cell cycle depends on the phosphorylation of key substrates by cyclin-dependent kinases. In budding yeast, these substrates include the transcriptional inhibitor Whi5 that regulates the G1/S transition. In early G1 phase, Whi5 is hypo-phosphorylated and inhibits the SBF complex that promotes transcription of the cyclins CLN1 and CLN2 . In late-G1, Whi5 is rapidly hyper-phosphorylated by Cln1,2 in complex with the cyclin-dependent kinase Cdk1. This hyper-phosphorylation inactivates Whi5 and excludes it from the nucleus. Here, we set out to determine the molecular mechanisms responsible for Whi5's multi-site phosphorylation and how they regulate the cell cycle. To do this, we first identified the 19 Whi5 sites that are appreciably phosphorylated and then determined which of these sites are responsible for G1 hypo-phosphorylation. Mutation of 7 sites removed G1 hypo-phosphorylation, increased cell size, and delayed the G1/S transition. Moreover, the rapidity of Whi5 hyper-phosphorylation in late G1 depends on 'priming' sites that dock the Cks1 subunit of Cln1,2-Cdk1 complexes. Hyper-phosphorylation is crucial for Whi5 nuclear export, normal cell size, full expression of SBF target genes, and timely progression through both the G1/S transition and S/G2/M phases. Thus, our work shows how Whi5 phosphorylation regulates the G1/S transition and how it is required for timely progression through S/G2/M phases and not only G1 as previously thought.