Purpose: To explore the association between widefield swept-source optical coherence tomography angiography (WF SS-OCTA) metrics, including nonperfusion area (NPA) and neovascularization (NV), and presence of neovascular glaucoma (NVG) in patients with proliferative diabetic retinopathy (PDR).
Methods: A prospective, cross-sectional study was conducted from November 2018 to February 2020. A total of 85 eyes of 60 PDR patients without NVG and 9 eyes of 8 PDR patients with NVG were included. Retinal ischemic parameters (NPA; ischemia index [NPA/total retinal area]) and NV features (NV number; NV area; NV vessel density) were evaluated. Foveal avascular zone (FAZ), macular thickness/volume, and choroidal thickness/volume were obtained using the Zeiss ARI Network. WF SS-OCTA retinal and choroidal metrics, systemic, and ocular parameters were screened using Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression for variable selection. Firth's bias-reduced logistic regression (outcome: presence of NVG) was subsequently used to identify parameters associated with NVG.
Results: After LASSO variable selection, 8 variables were significantly associated with the presence of NVG: DM duration (years), insulin (yes/no), best-corrected visual acuity (BCVA) (logMAR), IOP, ischemia index, skeletonized vessel density, macular thickness (inner inferior, outer temporal regions). Firth's bias-reduced logistic regression showed ischemia index (odds ratio [OR]=13.2, 95% confidence interval [CI]:5.3-30.7, P<0.001) and BCVA (OR=5.8, 95%CI:1.2-28.8, P<0.05) were associated with the presence of NVG. NV metrics, FAZ, and choroidal parameters were not related to NVG.
Conclusions: Retinal ischemia but not NV was associated with the presence of NVG in patients with PDR using WF SS-OCTA. Larger, longitudinal studies are needed to validate imaging biomarkers associated with diabetic NVG.
Keywords: Neovascular glaucoma; Neovascularization; Proliferative diabetic retinopathy; Swept-source optical coherence tomography angiography.
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.