Three deep learning (DL)-based prediction models (PMs) using longitudinal CT images were developed to predict tuberculosis (TB) treatment outcomes. The internal dataset consists of 493 bacteriologically confirmed TB patients who completed the anti-tuberculosis treatment with three-time CT scans, including a pretreatment CT scan and two follow-up CT scans. PM1 was trained using only pretreatment CT scans, and PM2 and PM3 were developed by adding follow-up scans. An independent testing was performed on external dataset comprising 86 TB patients. The area under the curve for classifying success and drug-resistant (DR)-TB was improved on both internal (0.609 vs. 0.625 vs. 0.815) and external (0.627 vs. 0.705 vs. 0.735) dataset by adding follow-up scans. The accuracy and F1-score also showed an increasing tendency in the external test. Regular follow-up CT scans can aid in the treatment prediction, and special attention should be given to early intensive phase of treatment to identify high-risk DR-TB patients.
Keywords: Bioinformatics; Machine learning; Respiratory medicine.
© 2023 The Authors.