Sudden collective atomic rearrangements trigger the growth of defect-free silver icosahedra

Nanoscale. 2023 Nov 30;15(46):18891-18900. doi: 10.1039/d3nr04530g.

Abstract

The growth of Ag clusters on amorphous carbon substrates is studied in situ by X-ray scattering experiments, whose final outcome is imaged by electron microscopy. The real-time analysis of the growth process at room temperature shows the formation of a large majority of icosahedral structures by a shell-by-shell growth mode which produces smooth and nearly defect-free structures. Molecular dynamics simulations supported by ab initio calculations reveal that the shell-by-shell mode is possible because of the occurrence of collective displacements which involve the concerted motion of many atoms of the growing shell. These collective processes are a kind of black swan event, as they occur suddenly and rarely, but their occurrence is decisive for the final outcome of the growth. Annealing and ageing experiments show that the as-grown icosahedra are metastable, in agreement with the energetic stability calculations.