The impact of short-term exposures to ambient NO2, O3, and their combined oxidative potential on daily mortality

Environ Res. 2024 Jan 15:241:117634. doi: 10.1016/j.envres.2023.117634. Epub 2023 Nov 17.

Abstract

It is widely recognized that air pollution exerts substantial detrimental effects in human health and the economy. The potential for harm is closely linked to the concentrations of pollutants like nitrogen dioxide (NO2) and ozone (O3), as well as their collective oxidative potential (OX). Yet, due to the challenges of directly monitoring OX as an independent factor and the influences of different substances' varying ability to contain or convey OX, uncertainties persist regarding its actual impact. To provide further evidence to the association between short-term exposures to NO2, O3, and OX and mortality, this study conducted multi-county time-series analyses with over-dispersed generalized additive models and random-effects meta-analyses to estimate the mortality data from 2014 to 2020 in Jiangsu, China. The findings reveal that short-term exposures to these pollutants are linked to increased risks of all-cause, cardiovascular, and respiratory mortality, where NO2 demonstrates 2.11% (95% confidence interval: 1.79%, 2.42%), 2.28% (1.91%, 2.66%), and 2.91% (2.13%, 3.69%) respectively per every 10 ppb increase in concentration, and the effect of O3 is 1.11% (0.98%, 1.24%), 1.39% (1.19%, 1.59%), and 1.82% (1.39%, 2.26%), and OX is 1.77% (1.58%, 1.97%), 2.19% (1.90%, 2.48%), and 2.90% (2.29%, 3.52%). Notably, women and individuals aged over 75 years exhibit higher susceptibility to these pollutants, with NO2 showing a greater impact, especially during the warm seasons. The elevated mortality rates associated with NO2, O3, and OX underscore the significance of addressing air pollution as a pressing public health issue, especially in controlling NO2 and O3 together. Further research is needed to explore the underlying mechanisms and possible influential factors of these effects.

Keywords: Mortality; Nitrogen dioxide; Oxidative potential; Ozone; Short-term exposures.

MeSH terms

  • Aged
  • Air Pollutants* / analysis
  • Air Pollutants* / toxicity
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Environmental Pollutants* / analysis
  • Female
  • Humans
  • Nitrogen Dioxide / analysis
  • Nitrogen Dioxide / toxicity
  • Oxidative Stress
  • Ozone* / analysis
  • Ozone* / toxicity
  • Particulate Matter / analysis
  • Time Factors

Substances

  • Air Pollutants
  • Nitrogen Dioxide
  • Ozone
  • Environmental Pollutants
  • Particulate Matter