In this study, we tested a new model of ankylosing spondylitis in order to determine its histological and radiological features needed to investigate peripheral arthritis, spondylitis, and formation of the new bone tissues. F1 hybrid male mice (BALB/c×DBA/1), a progeny of spondylitis-susceptible BALB/c male mice and rheumatoid arthritis-susceptible DBA/1 female mice, were immunized intraperitoneally with bovine type II collagen (CII) mixed with adjuvant dimethyldioctadecylammonium bromide. Radiological and histological studies were performed at the peak of swelling, redness, and stiffness. The incidence of peripheral arthritis and spondylitis induced by CII in F1 hybrid mice were 66 and 62%, respectively. X-ray examination revealed bone erosion and spondylitis in the peripheral joints, as well as the formation of new bone tissues in the coccygeal vertebrae and between LIII and LIV vertebrae. The histological study showed lymphocyte and plasma cell infiltration, capillary dilation, congestion, and endochondral ossification of the lumbar vertebrae. This novel model of CII-induced spondylitis in F1 hybrid mice provoked axial and peripheral arthritides inducing chronic inflammation. In this model, the formation of new bone tissue in the stiff spine is characterized by endochondral ossification. The advanced model is an additional and valuable tool for investigation of the autoimmune reactions in spondylitis.
Keywords: animal model; ankylosing spondylitis; endochondral ossification; mice; type II collagen.
© 2023. Springer Science+Business Media, LLC, part of Springer Nature.