Intermittent cold stimulation affects energy metabolism and improves stress resistance in broiler heart

Poult Sci. 2024 Jan;103(1):103190. doi: 10.1016/j.psj.2023.103190. Epub 2023 Oct 12.

Abstract

To investigate the effect of intermittent cold stimulation on cardiac energy metabolism and cold resistance of broilers, 288 broilers were divided into 3 groups: control group (CC) and 2 cold stimulation groups (CS3 and CS9). The CS3 and CS9 groups received cold stimulation at temperatures of 3°C and 9°C lower than CC group for 5 h from d 15 to 35. Three groups were subjected to acute cold stress (ACS) of 10°C for 12 and 24 h at 44 d. Performance, cardiac histopathological changes, heat shock proteins (HSPs), and lipid metabolism levels were measured. Results showed that the performance was not different among groups at 22 and 29 d (P > 0.05), but the mRNA levels of Acyl CoA synthase long-chain family member 1 (ACSL1) and acyl-coenzyme oxidase (ACO) in CS group were upregulated compared to CC group (P < 0.05). At 36 d, the performance of the CS3 group was better than the other 2 groups, myocardial structure was normal and other lipid metabolism indexes, except for peroxisome proliferator-activated receptor coactivator 1α (PGC-1α) levels, were similar to those of CC group (P > 0.05). The myocardial fiber disorder, Triglyceride (TG), and leptin (LEP) contents were significantly lower in CS9 group than in CC and CS3 groups at 36 d (P < 0.05). The HSP protein levels were significantly higher in CS group than in CC group before ACS (P < 0.05). After 24 h of ACS, the mRNA of lipid metabolism genes, the protein levels of HSP40 and HSP60, and the contents of TG and LEP in the CS3 group were upregulated compared to other groups. The CC and CS9 groups showed myocardial structure was destroyed, with lower TG and LEP levels compared to before ACS (P < 0.05). Therefore, cold stimulation at 3°C lower than the normal feeding temperature for 5 h did not impair performance but can increase the resistance of broilers to ACS by promoting lipid metabolism.

Keywords: PPARα/PGC-1α pathway; broiler; cold stimulation; heart; lipid metabolism.

MeSH terms

  • Animals
  • Chickens*
  • Cold Temperature
  • Cold-Shock Response
  • Energy Metabolism*
  • Lipid Metabolism
  • Myocytes, Cardiac
  • RNA, Messenger
  • Triglycerides

Substances

  • Triglycerides
  • RNA, Messenger