Kidney cancer is a kind of high mortality cancer because of the difficulty in early diagnosis and the high metastatic dissemination in treatments. The surgical resection of tumors is the most effective treatment for renal cancer patients. However, precise assessment of tumor margins is a challenge during surgical resection. The objective of this study is to demonstrate an optical imaging tool in precisely distinguishing kidney tumor borders and identifying tumor zones from normal tissues to assist surgeons in accurately resecting tumors from kidneys during the surgery. 30 samples from six human kidneys were imaged using polarization-sensitive optical coherence tomography (PS-OCT). Cross-sectional, enface, and spatial information of kidney samples were obtained for microenvironment reconstruction. Polarization parameters (phase retardation, optic axis direction, and degree of polarization uniformity (DOPU) and Stokes parameters (Q, U, and V) were utilized for multi-parameter analysis. To verify the detection accuracy of PS-OCT, H&E histology staining and dice-coefficient was utilized to quantify the performance of PS-OCT in identifying tumor borders and regions. In this study, tumor borders were clearly identified by PS-OCT imaging, which outperformed the conventional intensity-based OCT. With H&E histological staining as golden standard, PS-OCT precisely identified the tumor regions and tissue distributions at different locations and different depths based on polarization and Stokes parameters. Compared to the traditional attenuation coefficient quantification method, PS-OCT demonstrated enhanced contrast of tissue characteristics between normal and cancerous tissues due to the birefringence effects. Our results demonstrated that PS-OCT was promising to provide imaging guidance for the surgical resection of kidney tumors and had the potential to be used for other human kidney surgeries in clinics such as renal biopsy.
Keywords: kidney cancer; polarization-sensitive optical coherence tomography; renal tumor; surgical guidance; tumor border.