Tumor microenvironment (TME)-triggered phototheranostic platform offers a feasible strategy to improve cancer diagnosis accuracy and minimize treatment side effects. Developing a stable and biocompatible molecular phototheranostic platform for TME-activated second near-infrared (NIR-II) fluorescence imaging-guided multimodal cascade therapy is a promising strategy for creating desirable anticancer agents. Herein, a new NIR-II fluorescence imaging-guided activatable molecular phototheranostic platform (IR-FEP-RGD-S-S-S-Fc) is presented for actively targeted tumor imaging and hydrogen sulfide (H2 S) gas-enhanced chemodynamic-hypothermal photothermal combined therapy (CDT/HPTT). It is revealed for the first time that the coupling distance between IR-FE and ferrocene is proportional to the photoinduced electron transfer (PET), and the aqueous environment is favorable for PET generation. The part of Cyclic-RGDfK (cRGDfk) peptides can target the tumor and benefit the endocytosis of nanoparticles. The high-concentration glutathione (GSH) in the TME will separate the fluorescence molecule and ferrocene by the GSH-sensitive trisulfide bond, realizing light-up NIR-II fluorescence imaging and a cascade of trimodal synergistic CDT/HPTT/gas therapy (GT). In addition, the accumulation of hydroxyl radicals (•OH) and down-regulation of glutathione peroxidase 4 (GPX4) can produce excessive harmful lipid hydroperoxides, ultimately leading to ferroptosis.
Keywords: activatable fluorescence imaging; chemodynamic therapy; gas therapy; glutathione depletion; hypothermal photothermal therapy (HPTT); near-infrared II; photoinduced electron transfer.
© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.