Population-suppressing gene drives may be capable of extinguishing wild populations, with proposed applications in conservation, agriculture, and public health. However, unintended and potentially disastrous consequences of release of drive-engineered individuals are extremely difficult to predict. We propose a model for the dynamics of a sex ratio-biasing drive, and using simulations, we show that failure of the suppression drive is often a natural outcome due to stochastic and spatial effects. We further demonstrate rock-paper-scissors dynamics among wild-type, drive-infected, and extinct populations that can persist for arbitrarily long times. Gene drive-mediated extinction of wild populations entails critical complications that lurk far beyond the reach of laboratory-based studies. Our findings help in addressing these challenges.
Keywords: Ecological engineering; Extinction; Population dynamics; Population genetics; Synthetic biology.
Copyright © 2023 Elsevier Ltd. All rights reserved.