Biomimetic crystallization for long-pursued -COOH-functionalized gold nanocluster with near-infrared phosphorescence

Sci Bull (Beijing). 2024 Jan 15;69(1):40-48. doi: 10.1016/j.scib.2023.11.014. Epub 2023 Nov 7.

Abstract

As an interdisciplinary product, water-soluble gold nanoclusters (AuNCs) stabilized by ligands containing carboxyl (-COOH) group have garnered significant attention from synthetic chemists and biologists due to their immense potential for biomedical applications. However, revealing the crystallographic structures of -COOH-functionalized AuNCs remains a bottleneck. Herein, we successfully applied the salting-out method to obtain a series of high-quality single crystals of -COOH-functionalized Au25 nanoclusters and revealed their crystallographic structures. Particularly, K3Au25(2-Hmna)9(mna)6]- (Au25a) protected by 2-mercaptonicotinic acid features an unprecedented tetrameric Au4(SRS)3(SRS,N)2 staple motifs surrounding the icosahedral Au13 kernel, breaking the traditional perception on the structure of Au25(SR)18. Au25a exhibits a distinct near-infrared emission at 970 nm with long lifetime of 8690 ns, which have been studied by transient absorption spectroscopy and time-dependent density functional theory. This work compensates for the research gap in the experimental structure of -COOH-functionalized AuNCs and opens up a new avenue to explore their structure-property correlations.

Keywords: Near-infrared phosphorescence; Salting-out method; Water-soluble gold nanoclusters.